TWIST1 Integrates Endothelial Responses to Flow in Vascular Dysfunction and Atherosclerosis

نویسندگان

  • Marwa M. Mahmoud
  • Hyejeong Rosemary Kim
  • Rouyu Xing
  • Sarah Hsiao
  • Akiko Mammoto
  • Jing Chen
  • Jovana Serbanovic-Canic
  • Shuang Feng
  • Neil P. Bowden
  • Richard Maguire
  • Markus Ariaans
  • Sheila E. Francis
  • Peter D. Weinberg
  • Kim van der Heiden
  • Elizabeth A. Jones
  • Timothy J.A. Chico
  • Victoria Ridger
  • Paul C. Evans
چکیده

RATIONALE Blood flow-induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown. OBJECTIVE To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease. METHODS AND RESULTS The expression and function of TWIST1 was studied in EC in both developing vasculature and during the initiation of atherosclerosis. In zebrafish, twist was expressed in early embryonic vasculature where it promoted angiogenesis by inducing EC proliferation and migration. In adult porcine and murine arteries, TWIST1 was expressed preferentially at low shear stress regions as evidenced by quantitative polymerase chain reaction and en face staining. Moreover, studies of experimental murine carotid arteries and cultured EC revealed that TWIST1 was induced by low shear stress via a GATA4-dependent transcriptional mechanism. Gene silencing in cultured EC and EC-specific genetic deletion in mice demonstrated that TWIST1 promoted atherosclerosis by inducing inflammation and enhancing EC proliferation associated with vascular leakiness. CONCLUSIONS TWIST expression promotes developmental angiogenesis by inducing EC proliferation and migration. In addition to its role in development, TWIST is expressed preferentially at low shear stress regions of adult arteries where it promotes atherosclerosis by inducing EC proliferation and inflammation. Thus, pleiotropic functions of TWIST control vascular disease and development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The roles of potassium channels in contractile response to urotensin-II in mercury chloride induced endothelial dysfunction in rat aorta

Urotensin-II (U-II), the most potent vasoconstrictor that has recently been recognized as a new candidate in cardiovascular dysfunction, might exert vasoconstriction through, at least partially, potassium channels that are predominant in both endothelial and vascular smooth muscle cells (VSMCs). The present study was designed to evaluate the roles of potassium channels in vascular responses to ...

متن کامل

Flow perturbation is linked to endothelial par signaling.

The vascular endothelium integrates a variety of humoral stimuli and biophysical forces to maintain patent microvascular and macrovacular beds. At the interface between the blood and vessel wall, endothelial cells communicate in both directions by the release of growth factors, cytokines, and bioactive mediators to maintain vascular homeostasis. Endothelial dysfunction is central for acute syst...

متن کامل

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

TRP channels in endothelial function and dysfunction.

Endothelial cells produce various factors that regulate vascular tone, vascular permeability, angiogenesis, and inflammatory responses. The dysfunction of endothelial cells is believed to be the major culprit in various cardiovascular diseases, including hypertension, atherosclerosis, heart and renal failure, coronary syndrome, thrombosis, and diabetes. Endothelial cells express multiple transi...

متن کامل

Atheroprone flow activates inflammation via endothelial ATP-dependent P2X7-p38 signalling

Objective Atherosclerosis is a focal disease occurring at arterial sites of disturbed blood flow that generates low oscillating shear stress. Endothelial inflammatory signalling is enhanced at sites of disturbed flow via mechanisms that are incompletely understood. The influence of disturbed flow on endothelial adenosine triphosphate (ATP) receptors and downstream signalling was assessed. Met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2016